
CMPSCI 677 Distributed and Operating Systems Spring 2023

Lecture 2: February 8

Lecturer: Prashant Shenoy Scribe: Hetvi Shastri (2023), Steven (Jiaxun) Tang (2022),
Roy Chan (2019), Phuthipong Bovornkeeratiroj (2018)

Note: Please make sure that Gradescope is working for you.

Note: There is a Career Fair on February 24.

Reminder: No using laptops or phones during class.

2.1 Architectural Styles

Most distributed systems can be described by one of the architectures discussed in this lecture. It is important
to understand the differences between them so that we can decide on the architecture before implementing
a new system.

2.1.1 Layered Architectures

Figure 2.2: Layered Design

A layered architecture looks like a stack, as seen in the figure above. The system is partitioned into a
sequence of layers and each layer can communicate to the layer above or below. For example, layer i can
communicate with layer i+1 and layer i−1 but not the others (e.g. layer i+2). This is the main restriction of
a layered design. The layered architecture is especially common in web applications where this architecture
is divided across the client and the server. Common instances of these systems are multitiered architectures
and network stack.

2-1



2-2 Lecture 2: February 8

2.1.2 Object-Based Style

Figure 2.3: Object-based Style

In this architecture, each component corresponds to an object. Unlike in standard OOP programming,
objects can be distributed across multiple machines. As shown in the figure above, the system can have
many objects. Each object have has its own states and exposes its own interface which other objects can
use. All objects can communicate with any other object without restriction, making this a “generalized”
version of the layered design. Components interact with each other via remote procedure calls. We will
discuss RPC in Lecture 3.

2.1.3 Event-Based Architecture

Figure 2.4: Event-based Architecture

An event-based architecture has many components that communicate using a publisher-subscriber (pub-
sub) model via an event bus instead of through direct communication. In this architecture, a component
that sends an event to the event bus is a publisher, and a component that subscribes to certain types of
events on the event bus is a subscriber. Each component will work asynchronously. After a component
sends information by publishing an event, the event bus then checks for subscriptions matching the recipient
information enclosed in the newly published event. If one or more matching subscriptions is found, the
event bus will deliver the data to the appropriate component(s). There are many kinds of event busesk, e.g.,
memory-based or disk-based.

Question (Student): Is the event bus centralized or distributed?

Answer (Instructor): It depends on the application. If it is a large application, the event bus is
distributed over a set of machines, while for a small application, it is centralised.

Question (Student): Are the components connected to the event bus distributed? Is the event bus acting
like a network?



Lecture 2: February 8 2-3

Answer (Instructor): The components are a set of processes running on a different machine which
communicates through the event bus. An event bus is a machine or set of machines which receive and deliver
events.

2.1.4 Shared Data Space

Figure 2.5: Shared Style

The shared data space architecture has a shared data space which is like a physical bulletin board. A
component posts information and some component may come along later and retrieve the information.
Unlike in the event-based architecture, data posted in the shared data space have no specific information
about the recipient. Therefore, posted data can be in the shared data space for a while until some component
actively retrieve this data. From this sense, the components in the data-space architecture are loosely coupled
in space and time. Notice that the data that is published is not addressed to anyone in particular, and that
the data may not be recieved in real-time.

Question (Student): Does the shared data space architecture require a centralized server?

Answer (Instructor): The shared data space model is like a distributed database. It does not have to
be centralized and can be done in a distributed manner.

Question (Student): Can we publish something without receiving?

Answer (Instructor): Yes, items of general interest do not necessarily receive a response from data space.
E.g.:- Services you advertise, you advertise the printing job at a particular IP address. If somebody wants
to print, they can ask the data space and directly interact with the printer, which is coming directly from
the client and not the data space.

Question (Student): What if multiple components access the data space at the same time?

Answer (Instructor): Data space has to arbitrate that as it cannot do synchronization. It is not that
the notice is meant for just one person; any number of components can access it.

Question (Student): Is the last layer of the multi-tier application where we access the database considered
as shared data space?

Answer (Instructor): No, they are databases, not data space. In shared data space architecture, there
may be no query for the published items, which means that published items are not consumed, or you can
make a query and come empty-handed. They are decoupled in space and time, while in a database, you
make a query and you get a response. The data space is implemented using a database internally, but data
space does not give database abstraction.

Question (Student): What is the difference between event-based architecture (pub-sub arch) vs data
space?



2-4 Lecture 2: February 8

Answer (Instructor): In pub-sub, you have to subscribe to the event ahead of time; whenever an
event is published, the subscription lists of all clients are matched, and only matching ones are set to those
subscribers. In data space, there is no need to subscribe; you can publish an event, and some applications
can query it later. If there is a match, then you get it. There is a temporal difference as the data is delivered.

Question (Student): What will happen if you publish it, but it is not consumed by anyone?

Answer (Instructor): This architecture is loosely coupled. There is no guarantee that the published
components will be used.

Question (Student): Do components communicate apart from the data space?

Answer (Instructor): Data space is the primary mode of communication. However, as explained in the
above printer example, they can communicate through a separate channel, but that is no longer part of the
data space architecture.

Question (Student): Does data space has any capacity?

Answer (Instructor): Not assumed in this abstract concept case but in general, there will be some
constraints regarding the capacity of the data space.

Question (Student): In event bus architecture, does the event bus store any data, or is it just a
communication channel?

Answer (Instructor): You can have different types of the event bus. There will be some memory
buffering, so there is limited storage. While in data space, it can be considered a database on disk, so
information is held for a long time. By default, when you have an event channel or event buses, they have
memory buffering so you can hold it and deliver it, but you do not have long-term storage. Message queuing
(MQS) is a variant of event-based architecture with long-term storage.

2.1.5 Resource-Oriented Architecture (ROA)

A resource-oriented architecture exposes resources for clients to interact with. Resources have names and
related operations. Representational State Transfer (REST) is a common implementation of this architecture.
It has a standard naming scheme in which all services offer the same interface (GET/PUT/POST/DELETE).
No client state is kept, which means each request is logically decoupled. Since users often interact with the
resources of a web service, exposing application as resources make it easy to implement descriptive APIs. For
example, if you want to query/create/delete/update an object in the Amazon Object Storage Service S3,
you just need to send GET/PUT/DELETE/POST requests to https://{{BUCKET_NAME}}.s3.aws.com/

{{OBJECT_NAME}}.

Question (Student): REST services are stateless because all the information is in the URL. What about
authentication? Would you maintain states for that?

Answer (Instructor): It all depends on how you design the web service. Once authenticated, it can
provide a token. You can do authentication in a stateless manner.

Question (Student): Wouldn’t there still be a state sometimes?

Answer (Instructor): The service will typically be stateless.



Lecture 2: February 8 2-5

2.1.6 Service-Oriented Architecture

A service-oriented architecture exposes components as services. Each component provides a service. Services
communicate with each other to implement an application. Micro-services are one modern implementation
of a service-oriented architecture.

Question (Student): What is the difference between SOA and ROA?

Answer (Instructor): SOA exposes components as services and ROA exposes components as resources.
ROA requires services to connect via HTTP, while SOA doesn’t enforce the protocol used. ROA is stateless
and SOA can be stateful. ROA is also newer and is better for using HTTP.

Answer (Instructor): ROA is stateless and SOA can be stateful. ROA is also newer and is better for
using HTTP.

The following are comparisons between OOA, ROA, and SOA.

Figure 2.6: OOA vs. ROA vs. SOA

Question (Student): Can a system use hybrid architectures?

Answer (Instructor): Yes. For example, an application that uses micro-services can also implement
RESTful API. You can often choose a base architecture and compose other architectures together according
to your needs.

Question (Student): What is the meaning of ”Are replies cacheable” in the table given above?

Answer (Instructor): For most of these distributed applications, you can essentially have caches that
take the responses to request and key store them. If another request comes, you can first look into the cache
to see if someone has made that same request and if the reply is already in the cache. In this case, you
will send a response without invoking the service. In ROA, as it uses HTTP, it is easily done; you can use
standard using web caching and cache stack reply. This does not exist in the case of OOA; you cannot put
a cache in front of the JAVA process; that kind of concept does not exist.

Question (Student): How is communication done in object-oriented programming?

Answer (Instructor): In this case, objects are processes that reside on multiple machines, and they
communicate over a network, so you are going to call methods on the object just as you call methods on a



2-6 Lecture 2: February 8

java object. The main difference in this is that the code of that object is on some other machine, so your
invocation of that method has to go over a network. For this, we need to use RPCs and RMIs, which will
be taught in upcoming classes.

2.2 Client-Server Architecture

This is the most popular architecture. The client sends requests to the server, and then the server sends
a response back to the client. Remember that this does not necessarily refer to the hardware. The terms
“client” and “server” refer instead to the piece of software that requests the service or provides the service.
After the client sends a request, it waits while the server processes the request. In the figure below, you can
see the respective parties waiting when there is a dotted line.

Figure 2.6: Client-Server Architecture

Developers need to make design choices about which service should be put into which layer. Let us look at
an example to see how we would implement this.

2.2.1 Search Engine Example

Figure 2.7: Search Engine Example

Take Google search as an example. When you type something into the search box, you are interacting with
the UI level of Google search. Then, the UI will send your input to a query generator at the processing
level. The query generator translates your query expression into database queries and accesses the database
located at the data level. A ranking algorithm in the processing level takes the query results, ranks them,



Lecture 2: February 8 2-7

and passes the result to the HTML generator at the same level. The generated page is then sent back to the
UI layer and will be rendered by the browser as a webpage. The important part is understanding the tiers
and how they interact with each other in a distributed application. Other details like indexes and crawlers
are not the components we are considering here.

2.2.2 Multitiered Architectures

Figure 2.8: Client Server Choices

We see various “splits” of the 3 layers between client and server represented by the dotted line. The layer(s)
above the line are on the client, and the layer(s) below the line are on the server. As you can see, there are
many choices in how you split the implementation.

A typical implementation of (a) is a traditional browser-based application (e.g. SPIRE). The webpage is
constructed from the server-side and rendered in the browser. A typical implementation of (b) is single-paged
web application. The server does not render pages, but only provides APIs for data retrieval. The browser
will send AJAX requests to call those APIs. A typical implementation of (c) is a smartphone app, where the
application’s backend is usually split between the device and the server. Desktop applications usually follow
(d) where only the database is on the server, and the client is just accessing data. A smartphone app or a
whole app that exists on a client also follows this architecture. Lastly, (e) improves on (d). Data is cached
or stored locally. For example, Google’s offline mail caches a small subset of the user’s email locally. The
choice of which architecture to use depends on many factors, e.g., what you want to do, how much resources
the client has, etc.

Question (Student): Is the (e) in the above figure a cached application?

Answer (Instructor): It could be cached where you have a database cache that stores something, or it
could even be that some part of the database is on the client and some part of the database on the server.



2-8 Lecture 2: February 8

2.2.3 Three-tier Web Application

Figure 2.9: Three-tier Web Application

The three-tier web application architecture is a very popular architecture choice. The client’s browser sends
an HTTP request to an HTTP server (e.g. apache). The HTTP server then sends the request to the app
server (e.g. a Python backend) for processing in which it may create a query to the database server. The
database returns data to the app server that sends the results to the HTTP server which then forwards it
to the browser. The sequential nature of this architecture is a type of layer architecture seen earlier in the
search engine example.

These tiered architectures can use more or fewer than 3 layers depending on their setup. Modern web
applications will take the Application tier and split it into multiple tiers. A very common architecture for
web apps uses HTTP for the user, PHP or J2EE for the app server, and then a database for the bottom
tier. The divide between user and server is not set in stone as we saw in the previous section.

Question (Student): Does every spectrum from (a)-(e) in fig 2.8 follows the working mentioned in fig
2.9?

Answer (Instructor): This working shows how request flows and processing is done. According to
system, it could be possible that it does not go through all the tiers.

2.2.4 Edge-Server Systems

Figure 2.10: Edge Server

Unlike traditional client-server architecture, edge server systems implement a client-proxy-server architecture.



Lecture 2: February 8 2-9

As the name suggests, there is an extra component in between. The proxy (labeled as the edge server in the
figure above) sees if it can process the client’s request without having to go to the server (i.e. the Content
provider). If not, the proxy forwards the request to the real server. The advantage of this approach is that
the main server load is reduced, and data is moved to servers closer to the user so that the access latency
will be greatly reduced. Many other proxy services can be provided in addition to caching. Edge computing
goes one step further than simply providing a data cacheby allowing code execution in the edge server.

Question (Student): Can the proxy processes personalized requests?

Answer (Instructor): Proxies can process requests to users who are geographically closer to that proxy.
You can certainly get faster responses. Whether or not the responses are tailored is a different question
because that will depend on how the application personalizes responses to clients.

Question (Student): What is an edge server, and what are ISPs?

Answer (Instructor): ISPs are internet service providers, e.g.:- Comcast, Xfinity, AT&T. So the content
delivery networks are going to put proxies (caches) wherever there are users. One way to think about this is
that edge servers are business (enterprise) users, while ISPs are end customers. You put caches in enterprise
networks which are typically wired.

Question (Student): Is caching a primary use case for edge server, or are there others?

Answer (Instructor): Caching was the initial use case for deploying proxies, but there is something like
edge computing which does arbitrary processing.

Question (Student): Why is edge computing faster than going to the server?

Answer (Instructor): Edge server is geographically and network-wise closer to end users than a server.

Question (Student): Is there a difference between the edge server and the server besides location?

Answer (Instructor): Server has a lot more resources than the edge. The edge servers are not that much
capable as the main server. Edge servers are more resource constraint but closer than the main server.

Question (Student): Can there be multiple entities between the proxy and the edge?

Answer (Instructor): Yes it is called hierarchical caching.

Question (Student): Is there some notion of missing real-time data in proxy (cache) or edge computing,
which can be considered a disadvantage for an edge-server system?

Answer (Instructor): In caching, if there are changes in the server content, you need to implement
consistency which ensures that there is similar data in the proxy and server, so there is no notion of missing
real-time data. In edge computing, you send a request, and it processes and sends the response. There is
no difference between a response from a server and an edge server. There are only two differences: edge has
low capacity and low latency.

2.3 Decentralized Architectures (Module 3)

Decentralized architectures are also known as peer-to-peer (P2P) systems. Unlike the client-server architec-
ture, each node (peer) can be a client, server, or both with all nodes being mostly equal. That is, we are
removing the distinction between client and server. P2P systems can also come be structured or unstructured
systems. A peer can provide services and request services. Peers can also come and go at any time, unlike a
server which must be there all the time. We will introduce a structured peer-to-peer system named “Chord”
as an example.



2-10 Lecture 2: February 8

Figure 2.11: Chord Structure

The Chord system maintains a hash function to associate data nodes with an integer key. In this figure,
there are n = 16 keys in the system. The darker circles are peers that already joined the Chord. Node 1 is
responsible for storing data {0, 1}, node 4 is responsible for storing node {2, 3, 4} When a node joins, it picks
an ID that is a key and is unfilled from 1 to n and then stores keys from the previous node to itself. How
one chooses the key for a joining node can be random or structured. In our current case, when n7 joined, it
became responsible for storing [7, 6, 5]. When a node leaves, the chord structure assigns the leaving node’s
keys to the next node above it. If n7 were to leave, n12 would then be responsible for {12, 11, 10, 9, 8, 7, 6, 5}.
As one can see, joins and leaves are symmetric. Replication or redundancy is used so that when the node
leaves, the system still works.

Given a key in a request, the system has to figure out what node has that key. This can cause request
routing, in which the system will hop around nodes until the key has been found. Fortunately, the search is
actually fast, with a provided key, the system has to look up the value in the distributed hash table. The
hash table is provided by the distributed hash table (DHT) algorithm. P2P architectures are not as reliable
as client-server architectures, as peers can join and leave the network without advance notice. A technique
called “consistent hashing” ensures the DHT is fault tolerant.

More details about Chord can be found here:
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

Question (Student): What is the value that is stored in the hash table?

Answer (Instructor): It is a hash table so anything that can be in it. Usually it can store a file, i.e., the
service is a file lookup. But it is like asking, “What can you store in a database?” Whatever you want!

Question (Student): Does a P2P architecture imply an ad-hoc network? That is, do nodes just come
and go?

Answer (Instructor): It is designed to ensure high reliability. Unlike in a client-server architecture where
the server is assumed to be reliable, nodes may not be reliable so the system is built to handle nodes joining
and leaving.



Lecture 2: February 8 2-11

Question (Student): What if one of the actual nodes goes down? E.g. Node 12, which handles five other
nodes, goes down, what will happen to the other nodes?

Answer (Instructor): Peer-to-peer architecture can handle node failures, node arrivals and node depar-
tures. There is a notion of churn where responsibility gets reassembled if someone departs. So if node 12
goes down, the responsibility of nodes 8-11 is given to node 15.

Question (Student): What will happen if you insert a query?

Answer (Instructor): If you query 13 and start from node 7, it will forward to node 12 as 13 is bigger
than 7, and similarly, it will go from node 12 to node 15. At node 15, it will go back and get 13. This is
linear search O(n), but it can be better O(log(n)).

Question (Student): If a new peer arrives, how is it assigned?

Answer (Instructor): Peer picks a random id which is not chosen yet and joins the network. It can be
possible that there are more nodes in the first half than the other, but if we assume its uniform distribution,
then over time, you will balance it probabilistically, but there is no guarantee.

Question (Student): What if a peer goes, and you want the content to stay?

Answer (Instructor): You need to store it with many peers, which means you need to replicate it.

Question (Student): If you replicate, is there a central mechanism to decide?

Answer (Instructor): No, you will just randomize.

2.3.1 Content Addressable Network (CAN)

Figure 2.12: CAN Structure, with (b) showing a join procedure

Content Addressable Network (CAN) is another P2P system. As opposed to Chord, however, CANs are
generalized versions of Chord, i.e., they use a d-dimensional coordinate system. To make illustrations easier,
we will set d = 2 for the rest of this section. For example, we can have a tuple containing a file name and
a file type which would require a two-part key for the two-part attribute. Here, each piece of content in a
CAN has 2 identities: < id.x, id.y > or <file name, file type>. For example, two files named “Foo” may
have different file types such as .jpg and .txt.



2-12 Lecture 2: February 8

In the figure above, each dot is a node, meaning that each node is responsible for a rectangular partition of
the coordinate space. The user can have a more fine-grained query in this structure. The x-axis and y-axis
are showing normalized values of the keys from 0 to 1. If a node joins, it chooses a random (x, y) coordinate
and splits the box (i.e. a specific coordinate space) that it is in with the existing node. A node leaving is
more difficult, as the merging of 2 rectangles is not always a rectangle. If a node leaves, the system must
partition that rectangle to merge it with other already present rectangles. Consistent hashing again ensures
the correct handling of the hash when nodes exit.

Note: Remember that the specific example here shows 2 dimensions, but CAN could have any d-dimensional
coordinate system.

Note: In Chord, one can also represent the <file name, file type> attribute, but this would require concate-
nating the 2 keys into one.

Question (Student): Does this require a full replication of content on all peers?

Answer (Instructor): No, because that assumes all nodes will leave at the same time. Say, for example,
each node replicated at 3 other nodes. This provides the assumption that if 3 nodes leave, we’re still ok.

Question (Student): Are there any advantages of having two keys (CAN structure) over one key (chord
structure)?

Answer (Instructor): There is no significant difference; with two keys you can formulate well in an
understandable manner.

2.3.2 Unstructured P2P Systems

Rather than adhering to some topological protocol such as a ring or a tree, unstructured topologies are
defined by randomized algorithms, i.e., the network topology grows organically and arbitrarily. Each node
picks a random ID and then picks a random set of nodes to be neighbors with. The number of nodes is
based on the choice of degree. If k = 2, it means the new node will randomly link to 2 existed nodes and
establish logical connections. When a node leaves, the connections are severed and any remaining nodes can
establish new links to offset the lost connections.

Without structure, certain systems can become more complicated. For example, a hash table key lookup
may require a brute force search. This floods the network, and the response also has to go back the way
it came through the network. We observe that the choice of degree impacts network dynamics (overhead
of broadcast, etc.). The unstructured notion of such P2P systems framed early systems, but newer systems
have more structure in order to reduce overhead.

Figure 2.13: Search in Unstructured P2P System

From the figure above, we see that search in an unstructured P2P system is done by propagating through the



Lecture 2: February 8 2-13

graph as seen in the above figure. Here, a query (Q) is passed to node A, which is then propagated through
the network as each node queries its neighbors. Eventually, the signal is backpropagated to the sender. This
can easily flood the system as mentioned above, so one can create a hop count limit to reduce unnecessary
traffic. Each time the query is passed to a neighbor, the hop count is decremented. Upon reaching 0, the
node will simply return not found.

2.3.3 SuperPeers

Figure 2.15: Graph with SuperPeer Structure

A small modification to the completely unstructured P2P system allows for much more efficient communica-
tion and reduces overhead. The P2P graph is partitioned into clusters, where one peer, designated to be the
superpeer, within each cluster can communicate with other peers outside of the cluster. These superpeers
are dynamically elected within each group and should have additional resources to facilitate the increased
communication demand.

The restricted communication reduces unneeded calls to neighbors and prevents the huge amount of broadcast
traffic found in the completely unstructured P2P system. The number of messages should be lower. However,
there may still be a lot of traffic still flooding the network albeit only going through superpeers.

An early versions of Skype was a good example of how superpeers work. It tracked where users were and if
they were logged in from a specific cluster. It was a P2P system, but Skype has now moved to a client-server
architecture instead.

Question (Student): What are some more examples of superpeers?

Answer (Instructor): BitTorrent and P2P backup systems. However, whenever an application is very
important, they may not use P2P since P2P assumes that people are donating resources to make the system
work.

Question (Student): Are node link connections static or dynamic?

Answer (Instructor): We can’t assume that neighbors will stay up. The topology is constantly changing
so we must assume dynamic connections and that links with new neighbors will be made.



2-14 Lecture 2: February 8

2.3.4 Collaborative Distributed Systems

Figure 2.16: BitTorrent, an example of a collaborative distributed system

In a collaborative distributed system, files are split into chunks and spread across peers. A client can request
these chunks and piece them together. This system allows parallel file download sources from multiple
connections, which is faster than a sequential file download from a singular connection. A node can control
how parallel it wishes to be, i.e., how many nodes or peers it connects to.

A system like BitTorrent can also take into account an altruism ratio, and slow down a node based on the
ratio. If a node is just downloading without also uploading chunks in its possession, or more generally, provide
services to other peers, then the system may reduce the download speed of the node. This incentivizes nodes
to participate in and contribute to the network instead of freeloading so that they can get good performance.

Two key components are involved in a torrent system: the tracker and the torrent file. The tracker is an
index that monitors which nodes have which chunks. The torrent file points to the tracker and can be posted
on a web server. In short, the torrent file gets a client node to the tracker which shows which peers it needs,
and then the client node can directly connect to those peers based on the configurable setting of how many
peers it wants to connect to at one time.

Question (Student): Does the tracker get updated?

Answer (Instructor): As long as a user is connected to it, the tracker knows who has what content.

Question (Student): How do nodes agree on how a file is split?

Answer (Instructor): The file is split how you want. This is a configurable parameter in the system.

2.3.5 Autonomic Distributed Systems

An autonomic distributed system can monitor itself and take action autonomously when needed. Such
systems can perform actions based on the system performance metrics, system health metrics, etc. We will
not dive too deep into this topic, but knowing the concept helps.



Lecture 2: February 8 2-15

Figure 2.17: Automatic capacity provisioning

This is an illustration of how you might implement such a system. You can monitor the current workload,
predict future demand, and if the system thinks the current resource is not enough, deploy more nodes. If
the system thinks the resource is not enough, then the number of nodes could be reduced. This technique
is also called elastic scaling. The workload prediction part can involve many techniques. For example, we
could use feedback and control theory to design a self-managing controller. Machine learning techniques
such as reinforcement learning can also be used.


